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A B S T R A C T

Multimetric indices, such as the Index of Biological Integrity (IBI), are increasingly used by management

agencies to determine whether surface water quality is impaired. However, important questions about

the variability of these indices have not been thoroughly addressed in the scientific literature. In this

study, we used a bootstrap approach to quantify variability associated with fish IBIs developed for

streams in two Minnesota river basins. We further placed this variability into a management context by

comparing it to impairment thresholds currently used in water quality determinations for Minnesota

streams. We found that 95% confidence intervals ranged as high as 40 points for IBIs scored on a 0–100

point scale. However, on average, 90% of IBI scores calculated from bootstrap replicate samples for a

given stream site yielded the same impairment status as the original IBI score. We suggest that sampling

variability in IBI scores is related to both the number of fish and the number of rare taxa in a field

collection. A comparison of the effects of different scoring methods on IBI variability indicates that a

continuous scoring method may reduce the amount of bias in IBI scores.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Biological indicators are now an integral part of water quality
monitoring programs worldwide (Furse et al., 2006; Yagow et al.,
2006; Marchant et al., 2006; Borja et al., 2008). In the United States,
multimetric indices such as the Index of Biological Integrity (IBI)
have been widely adopted by water management agencies as the
primary tool for assessing the biological condition of streams and
lakes (Karr and Chu, 1999; EPA, 2002). These IBIs consist of a suite
of metrics that reflect the taxonomic composition, trophic
relationships, and abundance and condition of organisms within
an aquatic community, and thus aim to convey an integrated
picture of ecosystem health (Karr and Yoder, 2004).

Increasingly, resource managers use IBIs to assess whether
surface waters fulfill the requirements of their designated uses
under the Clean Water Act (EPA, 2002). If IBI scores do not meet
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expected criteria, streams can be added to the 303(d) impaired
waters list and scheduled for subsequent management action
under the Total Maximum Daily Load (TMDL) program. In
Minnesota, for example, 10% of surface waters designated as
impaired in 2008 were listed primarily on the basis of poor IBI
scores, in conjunction with other relevant habitat, water chem-
istry, and catchment data (MPCA, 2008). The increasing promi-
nence of biological indices in management decisions warrants
careful evaluation of their strengths and limitations, particularly
regarding their susceptibility to error.

Whereas the application of IBIs to new geographic contexts and
scales continues to receive broad attention in the scientific
literature (e.g., Stoddard et al., 2008; Wang et al., 2008; Pinto
et al., 2009), only a few studies have directed attention to the
inherent statistical properties of these indices—i.e., their precision
and accuracy, as well as their sensitivity to variation in biological
samples (Fore et al., 1994; Carlisle and Clements, 1999; Blocksom,
2003). The best known of these efforts was undertaken by Fore
et al. (1994), who used a bootstrapping approach to quantify the
response of IBIs to random sampling variation. Bootstrapping,
originally described by Efron (1979, 2003), is a computer-intensive
statistical technique used to estimate variability of a statistic when
the actual distribution is unknown, such as when that statistic is
determined from a single random sample.
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We believe the application of bootstrapping to the problem of
IBI variability warrants further consideration for a number of
reasons. First, the increased availability of large biomonitoring
datasets and advances in computing processing speed allow for a
more robust estimate of index variability. Moreover, the metrics
included in a multimetric index, and the way in which those
metrics are scored, may vary depending upon the unique
geographic location to which an index is applied (Simon and
Lyons, 1995). The quantification of variability associated with an
alternative set of IBIs (i.e., IBIs designed for Minnesota streams) can
therefore reveal new information about the ways in which these
indices may respond to variability in biological data. Finally, given
that IBIs are increasingly relied upon to determine whether site
water quality is impaired, estimates of IBI variability need to be
examined in an updated context that considers the current criteria
upon which such impairment decisions are made.

The broad goals of this research were to assess (1) whether
fish IBI scores used in Minnesota can provide a consistent
indication of stream quality, given random sampling variability;
Fig. 1. Stream sites in the Upper Mississippi (n = 181) and St. Croix (n = 207) river

Pollution Control Agency between 1996 and 2006. In some cases, more than one sample

388 stream sites.
and (2) whether the IBI score represents an appropriate policy tool
on which to base yes/no decisions about stream impairment.
Specifically, we sought to address the following research ques-
tions: What is the range of possible IBI scores that a stream site
may receive given random sampling errors in fish samples (i.e.,
how sensitive is the IBI to these errors)? Are stream impairment
decisions based on IBI scores likely to change as the result of these
errors? What aspects of fish samples might be related to IBI
sensitivity? Are IBIs for some types of streams more sensitive than
others? Do different scoring systems for component metrics of the
IBI improve index accuracy (i.e., reduce index bias)? How does
random sampling error in IBI scores compare to IBI variability over
time? To evaluate these questions, we used bootstrapping to
mimic the effects of random sampling on a set of IBIs developed by
the Minnesota Pollution Control Agency (MPCA) for fish commu-
nities in the St. Croix and Upper Mississippi River basins,
Minnesota. We then quantified the IBI’s sensitivity to random
sampling errors, and demonstrated how this sensitivity relates to
IBI-based impairment decisions for Minnesota streams. Finally, we
basins from which quantitative fish samples were collected by the Minnesota

was collected from a stream site over time, yielding a total of 513 samples across all



Table 1
Variables used by the MPCA to classify warmwater stream sites. Ecoregion was used only to further classify large rivers sites (drainage area >691 km2) within the St. Croix

basin.

Stream class Major drainage basin Drainage area size (km2) Stream size class Ecoregion # site visits used

in this study

1 St. Croix <51 Headwater 77

2 St. Croix 51–138 Small 86

3 St. Croix 138–691 Moderate 73

4 St. Croix >691 River Northern Lakes and Forests 32

5 St. Croix >691 River North Central Hardwoods 35

6 Upper Mississippi <13 Headwater 25

7 Upper Mississippi 13–90 Small 70

8 Upper Mississippi 90–512 Moderate 57

9 Upper Mississippi >512 River 58

Table 2
Metrics used by the MPCA to calculate the fish Index of Biological Integrity (IBI) for

warmwater streams in the St. Croix and Upper Mississippi River basins.

Metric Anticipated

response to

disturbance

Stream classes

using metric

in IBI score

Total no. of species Decrease All classes

No. of benthic invertivore species Decrease 2–5

No. of darter species Decrease 3–5

No. of darter, sculpin, and madtom species Decrease 8–9

No. of invertivore speciesa Decrease 1; 6–9

No. of minnow speciesa Decrease 1–2; 7

No. of omnivore species Increase 3–5

No. of sensitive species Decrease 2–5; 7–9

No. of wetland speciesa Decrease 6–8

No. headwater speciesa Decrease 1

% of total abundance comprised of

individuals of the two most

abundant taxa

Increase 1–2; 6–7

% of individuals with deformities,

lesion, or tumors

Increase All classes

% of individuals classified as omnivore

species

Increase 9

% of individuals classified as lithophilic

spawners

Decrease 1–5; 7–9

% of individuals classified as piscivores Decrease 3–5; 8–9

% of individuals classified as tolerant Increase All classes

No. of individuals per metera Decrease All classes

a Metrics exclude species that are considered tolerant to disturbance.

C.L. Dolph et al. / Ecological Indicators 10 (2010) 527–537 529
identified specific characteristics of fish samples and of the IBI
itself that correlated with IBI sensitivity, including whether
continuous or discontinuous methods were used to score the IBI’s
component metrics.

2. Methods and materials

2.1. Study sites and data collection

We used fish IBI scores from stream sites in two of Minnesota’s
major river basins (Fig. 1): the St. Croix (n = 303 site visits at 207
unique sites) and Upper Mississippi (n = 210 site visits at 181
unique sites). Stream sites included in this study spanned a broad
range of IBI scores and drainage size classes, as well as three
different ecoregions: Northern Lakes and Forests (NLF), North
Central Hardwoods (NCH), and Western Cornbelt Plains (WCBP).

The IBIs used to assess the health of fish communities in these
basins were developed by the MPCA as part of the state’s biological
monitoring program (Niemela and Feist, 2000, 2002). These IBIs
were developed exclusively for warmwater streams; thus, no
coldwater streams are included in our analysis. To stratify natural
variability across warmwater streams, the MPCA classified these
stream sites by major river basin, drainage area size, and ecoregion,
resulting in 9 separate stream classes (Table 1). Drainage area size
classes are closely related to stream order and discharge (Allan and
Castillo, 2008), and were chosen to minimize differences in
maximum species richness among headwater, small, moderate,
and large river systems (Table 1; Niemela and Feist, 2000, 2002).

Separate IBIs were developed for each stream class, with each
IBI comprised of a slightly different set of metrics and metric
scoring criteria (Table 2). The only exceptions were classes 3 and 4
IBIs, which used the same metrics and scoring criteria, and class 5
IBIs, which also used the same set of metrics as classes 3 and 4, but
slightly different scoring criteria for two of the 10 component
metrics (total no. of species and no. of sensitive species). For class 5
streams, higher numbers of total and sensitive species were
required to receive a given metric score, relative to classes 3 and 4
streams. For example, 29 or more species were required for the
total no. of species metric to receive a score of 10 in class 5 streams,
whereas only 23 species were required for this metric to score a 10
in classes 3 and 4 streams.

All individual metric scores ranged from 0 to 10; however, some
metrics were scored using five categories (0, 2, 5, 7, 10), whereas
others were scored using only three (0, 5, 10). One metric (no. of
individuals per meter) was scored using only two categories (0 or
10). IBIs in all classes had a possible range of 0–100, and most IBIs
consisted of 10 metrics. Where IBIs consisted of fewer than 10
metrics (stream classes 1, 2, and 6), the sum of metric scores was
normalized to a 100 point scale (Niemela and Feist, 2000, 2002).

Fish samples used in IBI calculations were collected by the
MPCA during summer low-flow conditions from 1996 to 2006. Fish
were captured by electrofishing, and were identified to the lowest
possible taxonomic level (typically species). Four types of
electrofishing equipment were used to collect fish, with selection
of equipment type dependent on stream size and accessibility
(Niemela and Feist, 2000, 2002). In small, wadeable streams (<8 m
wide), a backpack electrofisher was used to sample streams in an
upstream direction, with one person carrying the electrofishing
gear and one person collecting fish with a dip net. Where possible,
almost all of the available habitat was sampled, but in streams
>3 m wide, the sampling crew weaved among habitat types. In
larger wadeable streams (>8 m wide), a stream electrofisher was
used, in which a generator and control box were secured in a canoe,
attached to two anodes. The canoe was pulled upstream by one
person, two people deployed the anodes, and two people dip-
netted for fish, again weaving among available habitat types. In
small but unwadeable streams, a mini-boom electrofisher was
used to sample streams. This unit consisted of a generator and
control box placed into a small jon-boat, and connected to a single
anode. A driver directed the boat downstream and weaved through
different habitat types as a single person dip-netted for fish from
the bow. Finally, a boom electrofisher was used to sample large,
unwadeable rivers. Two crew members collected fish with dipnets
from the bow, as the boat driver conducted three separate
sampling passes in a downstream direction: one along each
shoreline and one along the middle of the channel.
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2.2. Bootstrapping

Bootstrapping creates replicate samples from a single
sample by randomly resampling from the original sample with
replacement (Chernick, 1999; Efron, 2003; Manly, 2007). In the
case of a fish sample from a single stream site, for example, the
bootstrapping algorithm randomly selects one individual speci-
men at a time, adds it to a new replicate sample, and replaces it in
the original sample, where it again has the same probability of
being selected as any other specimen. Resampling is repeated in
this manner until the number of individuals in the replicate
sample is equivalent to the number of individuals in the original
sample. The result is a series of samples that contain ‘‘collections
of fish that could have been caught at the same site and time by
electrofishing’’ (Fore et al., 1994), differing only by random
variation. An IBI score can be determined for each individual
bootstrap replicate sample, and the mean and variance can be
calculated across all bootstrap replicates for a given site visit. The
end result is the range of possible IBI scores that a stream site
could receive, given variability in the fish collection that may
arise from random sampling effects.

In this study, we created 1000 bootstrap samples for each
original fish sample using the statistical software R. This number of
replicates is generally considered sufficient for confidence interval
generation (Chernick, 1999; Carpenter and Bithell, 2000). Of the
many methods available for determining confidence intervals from
bootstrap data (Carpenter and Bithell, 2000), we used the
percentile method based on simplicity of use and to enable
comparisons with an earlier study by Fore et al. (1994). The
primary disadvantage of the percentile method is poor perfor-
mance with small samples and asymmetric distributions (Cher-
nick, 1999).

To estimate a 95% percentile confidence interval for an IBI score
at a given stream site, we first sorted IBI scores from the replicate
bootstrap samples into ascending order. For 1000 replicate scores,
the 25th ordered value represents the lower bound of the
confidence interval, and the 975th ordered value represents the
upper bound (Carpenter and Bithell, 2000). Confidence interval
length was determined by subtracting the lower bound from the
upper bound value.

2.3. Implications of variability for impairment status

The MPCA derives impairment thresholds for IBI scores from a
set of reference sites (i.e., sites that are relatively unimpacted by
human disturbance) in each stream class. The lowest IBI score in
the range of all IBI scores measured at reference sites in a given
stream class is taken as the impairment threshold for that class
(MPCA, 2007). The MPCA also designates a confidence region
around the impairment threshold (approximately �9 points for
sites in the St. Croix River basin and �13 points for sites in the Upper
Mississippi River basin) that is based on variability of IBI scores at
least impacted (i.e., reference) sites over time (MPCA, 2007). IBI scores
falling above and below this confidence region are considered
‘unimpaired’ and ‘impaired’, respectively; IBI scores falling within the
confidence region are considered ‘potentially impaired’, with addi-
tional evidence needed to verify status.

In this study, our objective was to evaluate whether stream
impairment decisions based on IBI scores are likely to change as
the result of random sampling error. We therefore determined how
many of the 1000 IBI scores generated for each site visit indicated a
different impairment status (‘impaired’, ‘potentially impaired’, or
‘unimpaired’) than the original IBI score. This number was divided
by 1000 to calculate the proportion of bootstrap scores that
diverged from the original score for a given site visit. Finally, these
proportions were averaged across all 513 site visits.
2.4. Identifying covariates of IBI sensitivity

In addition to quantifying the IBIs’ sensitivity to random
sampling errors, we sought to identify aspects of fish samples that
were related to this sensitivity. In particular, we sought to
investigate whether IBI sensitivity was affected by aspects of
community abundance or richness. We used simple linear regres-
sion to assess the relationship between confidence interval length
and several possible covariates, including the total number of fish in
a sample (i.e., sample size), the total number of taxa in a sample (i.e.,
species richness), Pielou’s evenness, and the number of species that
occurred as single individuals in a sample (i.e., the number of
singletons). Pielou’s evenness was calculated using the vegan:
community ecology package in R (Oksanen et al., 2009). By including
the number of singletons as a covariate, we sought to capture the
effect of rare species on IBI variability. Using the segmented package
in R (Muggeo, 2008), we also conducted breakpoint regression
analysis (Muggeo, 2003) to further identify whether there were any
abrupt changes in IBI sensitivity with increasing sample size. Finally,
we used analysis of variance (ANOVA) to determine whether the
number of singletons varied among stream classes.

2.5. Comparative performance of IBIs

We evaluated whether IBI confidence interval length varied
among the nine different stream classes using ANOVA followed by
Dunnett’s modified Tukey–Kramer (DTK) multiple comparison test
(Dunnett, 1980), to determine whether some combinations of
metrics were more sensitive to random sampling error than others.
The DTK test was selected because it is appropriate for testing
multiple pairwise comparisons when sample sizes or sample
variances are unequal, and was applied using the DTK package in R,
with a = 0.05 (Lau, 2009).

2.6. Continuous scoring of metrics and bias among IBI scores

Component metrics of the fish IBIs used in this study are
currently scored in a discontinuous fashion; that is, metric values
typically receive a discrete score of 0, 2, 5, 7, or 10. This type of
scoring method was originally proposed by Karr (1981), and has
been incorporated into many subsequent IBIs. However, Fore et al.
(1994) suggested that a discontinuous scoring system resulted in
bias among IBI scores (i.e., in scores that underestimate the
integrity of high quality sites and overestimate the quality of poor
quality sites). In this study, we developed a continuous scoring
method for IBI metrics, and evaluated whether the use of this
method reduced bias among replicate IBI scores compared to the
discontinuous method used by the MPCA.

To score metrics continuously, a linear piecewise polynomial
was defined in which continuous scores were anchored to the
discontinuous discrete scores at the midpoint of the metric values
for a given discrete score (i.e., continuous and discrete scores were
the same at this midpoint value), and were everywhere continuous
(de Boor, 1978). We then recalculated IBI scores for each bootstrap
replicate sample using this new scoring system. Bias associated
with the discontinuous and continuous scoring methods was
determined for each stream site by subtracting the resulting IBI
score calculated from the original sample from the mean IBI score
calculated across the 1000 bootstrap replicate samples. Paired
two-sided t-tests were used to evaluate differences between mean
bootstrap IBI scores and original scores.

2.7. Random sampling error vs. variability over time

In the St. Croix River basin, fish samples were available over four
consecutive years at 12 unique stream sites. We compared
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confidence intervals derived from bootstrapping for these sites
with those determined by calculating variance over time, with the
goal of understanding the relative contributions of random
sampling error and temporal variation to overall variability in
IBI scores. Confidence intervals for IBI scores calculated from
repeat visits over time were determined by x̄� t�ðs=

ffiffiffi

n
p
Þ, where

x̄ ¼mean IBI score, t* = critical value from the n � 1 student’s t

distribution, s = the standard deviation of the repeat IBI scores, and
n = the number of repeat visits for each site. Repeat visits over
multiple years were not available for sites in the Upper Mississippi
River basin.

3. Results

3.1. IBI variability and the impairment threshold

IBI confidence interval length (i.e., IBI sensitivity) in response to
random sampling error ranged from 0 to 40 points (mean = 11)
across all 513 stream site visits included in this study. In 510 of
these site visits (99.4%), this random sampling variability was not
sufficient to change impairment status from ‘unimpaired’ to
‘impaired’, or vice versa, relative to the site’s original IBI score
(Fig. 2). In other words, for these sites a bootstrap replicate sample
never received an IBI score classified as ‘impaired’ if the original
score had been classified as ‘unimpaired’, or vice versa. For the
remaining three site visits, 0.3%, 0.4%, and 1.0% of replicate samples
were classified as ‘impaired’ when the original sample was
classified as ‘unimpaired’.

Although bootstrap IBI scores rarely indicated the opposite
impairment status compared to the original score, 19.8% of a site
visit’s replicate samples, on average, were classified as
‘potentially impaired’ when the original sample was classified
as ‘unimpaired’ (Fig. 2). Conversely, when the original IBI score
was classified as ‘impaired’, 2.2% of replicate samples, on
average, indicated that the site was ‘potentially impaired’.
Finally, when the original score was ‘potentially impaired’, 1.7%
and 7.4% of replicate samples, on average, gave IBI scores that
would be considered ‘unimpaired’ and ‘impaired’, respectively.
Overall, 11.3% of bootstrap replicate samples yielded IBI scores
that resulted in a different impairment outcome than the
original IBI score. For sites with original scores that fell within
20 points of the impairment threshold, 16.0% of bootstrap
replicate samples yielded a different impairment outcome than
the original sample.
Fig. 2. Examples of confidence interval lengths generated by bootstrapping relative to th

streams in class 1 (St. Croix basin; drainage area <51 km2); (B) streams in class 5 (St. C

relationships were obtained for sites in other drainage area and basin classes (not shown

percentile confidence intervals around the mean IBI score. Solid lines represent threshold

be considered impaired.
3.2. Covariates of IBI sensitivity

Confidence interval length was not significantly related to
species richness or Pielou’s evenness for sites in either river basin.
However, confidence interval length did increase significantly with
increasing numbers of singletons for sites in the St. Croix (linear
regression, r2 = 0.12, p < 0.001) and the Upper Mississippi
(r2 = 0.06, p < 0.001, Fig. 3). In turn, the number of singletons
was strongly related to stream class, with increasing numbers of
singletons occurring in progressively larger stream size classes in
both major basins (ANOVA, F = 34.53, d.f. = 8504, p < 0.001, Fig. 4).

In addition, linear regression indicated a significant negative
relationship between confidence interval length and the number
of fish in the original sample for sites in St. Croix basin (r2 = 0.09,
p < 0.001), and the Upper Mississippi basin (r2 = 0.04, p = 0.004).
Subsequent analysis using breakpoint regression (Muggeo, 2003)
indicated a threshold in confidence interval length when samples
contained approximately 160–170 fish (Fig. 5). Confidence
interval lengths were more likely to be less than 10 points for
sample sizes beyond the breakpoint value. Sixty-two of 303 (20%)
samples from the St. Croix basin and 73 of 210 (35%) samples
from the Upper Mississippi basin had total numbers of fish that
were less than the breakpoint values. For these sites, mean
confidence interval lengths were 13 (St. Croix) and 14 (Upper
Mississippi) points.

Confidence interval length was significantly related to IBI score
in the Upper Mississippi basin (linear regression, r2 = 0.25,
p = 0.021, Fig. 6), but not in the St. Croix (r2 = 0.005, p = 0.225).
Original IBI score was also correlated with the total number of fish
in the original sample in both basins (linear regression, r2 = 0.27,
p < 0.001 and r2 = 0.24, p < 0.001, for the St. Croix and Upper
Mississippi, respectively, Fig. 7).

3.3. Comparative IBI performance

IBI confidence interval lengths were significantly different
among the nine separate stream classes (ANOVA, F = 2.787,
d.f. = 7505, p = 0.007, Fig. 8). A multiple pairwise comparison test
(DTK test, a = 0.05) indicated that IBI scores in stream class 5 (large
rivers located in the St. Croix basin and the NCH ecoregion) and
class 8 (moderate-sized streams located in the Upper Mississippi
basin) had larger confidence intervals than streams in class 3
(moderate-sized streams located in the St. Croix basin); no other
significant differences between stream classes were found.
e impairment threshold used to make water quality management decisions for (A)

roix basin; drainage area >691 km2; North Central Hardwoods ecoregion). Similar

). Circles are mean IBI scores sorted into ascending order; error bars represent 95%

s used by the Minnesota Pollution Control Agency to determine whether sites should



Fig. 3. Confidence interval length as a function of the total number of singletons in the original sample for sites in the St. Croix and Upper Mississippi River basins. Solid lines

are statistically significant linear regression models.
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3.4. Metric scoring and bias

Across all sites, mean IBI scores of bootstrap replicates were
significantly lower (i.e., exhibited negative bias) than the original
Fig. 4. Distribution of the number of singletons within each stream class. Boxes

represent first and third quartiles, black lines are medians, whiskers are 1.5� the

Interquartile Range, circles are outliers.

Fig. 5. Confidence interval length as a function of the total number of fish in the original

statistically significant linear regression models; solid lines are statistically significant br

of 160 fish (95% CI, 108–212 fish) and 171 fish (95% CI, 77–265 fish) for samples colle
IBI score (paired t-test, t = 21.09, d.f. = 512, p < 0.001). Mean IBI
scores were 2.5 points lower, on average, than the original scores
(range = �13.4 to +8.1). Bias was significantly and negatively
related to IBI score (linear regression, r2 = 0.08, p < 0.001, Fig. 9A).
Although replicate samples tended to have lower IBI scores than
original samples, replicate samples for sites with low original
scores were more likely to exhibit zero bias (i.e., replicate samples
gave approximately the same score relative to the original sample),
whereas sites with high original scores had almost uniformly
negative bias (i.e., replicate samples underestimated the score).

When IBIs were recalculated using the continuous scoring
method, a significant negative correlation between IBI score and
bias was still evident (Fig. 9B; linear regression, r2 = 0.15,
p < 0.001). However, mean bias was substantially reduced to
�0.06 (range = �8.3 to +12.0), and mean IBI scores of bootstrap
replicates were no longer significantly different from the original
IBI scores (paired t-test, p = 0.60).

3.5. Comparison with variability over time

Estimates of confidence levels derived from repeat visits over
time were compared with those derived from bootstrap replicates
for 12 stream sites (Fig. 10). For poor to moderate quality sites
sample for sites in the St. Croix and Upper Mississippi River basins. Dashed lines are

eakpoint regression models. Breakpoint regression indicated estimated break points

cted in the St. Croix and Upper Mississippi basins, respectively.



Fig. 7. Original IBI score as a function of total number of fish (log10 scale) in the original field sample. In both basins, solid lines indicate statistically significant relationships.

Fig. 6. Confidence interval length as a function of original IBI score. The relationship is significant for sites in the Upper Mississippi, but not for sites in the St. Croix.
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(IBI < 70), estimates of temporal variability tended to exceed
variability attributed to random sampling error. For higher quality
sites (IBI > 70), both estimates of variability were in close
agreement, except for the two highest quality sites, in which
temporal variance greatly exceeded that due to random sampling
error. Both of these sites were rivers with large drainage areas
(D.A. > 691 km2).
Fig. 8. Distribution of IBI confidence interval lengths (95% percentile) within each of the n

whiskers are 1.5� the Interquartile Range, circles are outliers. A Dunnett–Tukey–Kramer

IBIs were significantly greater than those for class 3 IBIs.
4. Discussion

4.1. Can impairment status be affected by random sampling error?

In this study, we found that nearly a quarter of fish IBI scores for
Minnesota streams varied by more than 15 points as the result of
random sampling error, with the most variable score having a
ine stream classes. Boxes represent first and third quartiles, black lines are medians,

multiple comparison test indicated that confidence intervals for class 5 and class 8



Fig. 9. Bias (mean bootstrap IBI–original IBI) for all stream sites when IBIs are calculated using (A) the original discontinuous scoring system used by the Minnesota Pollution

Control Agency; and (B) a continuous scoring system using a linear curve drawn between the midpoints of metric values. Dashed lines represent zero bias expected if

bootstrap IBI scores matched original IBI scores; solid lines are statistically significant linear regressions of bias as a function of IBI score.
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range of 40 points. In contrast, when converted to a 100 point
scale, confidence interval lengths for a set of IBIs from Ohio
ranged from 0 to 25, with few sites exhibiting confidence intervals
greater than 15 (Fore et al., 1994). Despite the high variability of
some of the Minnesota IBIs, however, only one in 10 replicate IBI
scores for a given site, on average, indicated a different impairment
outcome than the original score. Moreover, random sampling
variability was not sufficient to change a site’s status from
‘unimpaired’ to ‘impaired’ or vice versa in over 99% of stream site
visits included in this study (although an IBI score could change
from ‘unimpaired’ or ‘impaired’ to ‘potentially impaired’, or vice
versa). Not surprisingly, the number of replicate samples that
produced different outcomes relative to the original sample
increased for sites with IBI scores close to the impairment
threshold. Taken together, however, we suggest that the effects
of random sampling error on IBI score are not likely to change the
impairment status of a stream site in most cases.

When random sampling variability did change the impairment
outcome, we suggest that type I error (underestimating stream
health) was more common than type II error (underestimating
stream impairment). In this study, type I error would occur if
bootstrap samples from sites with original IBI scores above the
confidence region (i.e., unimpaired sites) yielded scores below or
within this region. Type II error, on the other hand, corresponds to
the probability that IBI scores based on bootstrap replicate samples
fell above the confidence region around the impairment threshold,
when the original IBI score fell below or within the impairment
confidence region. The increased prevalence of type I relative to
Fig. 10. Comparison of temporal variability with estimates of bootstrap variability

for 12 sites in the St. Croix basin sampled over four consecutive years. Bootstrap

variability was calculated as the mean of the four bootstrap confidence interval

lengths generated for each site.
type II errors suggests that impairment decisions based on IBI
scores are conservative in terms of protecting stream health; that
is, by using IBI scores to determine site impairment, management
agencies are more likely to list unimpaired sites as impaired or
potentially impaired than they are to fail to list impaired sites. If a
goal among resource managers is to protect water resources before
they become severely degraded, this conservative approach may
be appropriate.

The greater number of type I errors is also indicative of the
negative bias among IBI scores calculated from bootstrap replicate
samples. Although we found that mean bias was relatively small
(approximately 2–3 points), in some cases mean IBI scores derived
from bootstrap replicates were 13–14 points lower than the
original scores. At the same time, the negative correlation between
bias and IBI score indicates that only the quality of less-impacted
sites tended to be underestimated, whereas the quality of highly
degraded sites tends to be more accurately conveyed by bootstrap
replicate samples. Fore et al. (1994) argued that this bias occurs in
part because of the discontinuous scoring system typically used in
many IBIs. They further argued that scoring metrics on a
continuous scale would help to reduce the effects of this bias,
since small changes in samples would have a smaller effect on
metric and overall IBI scores.

We designed a continuous scoring system for the metrics
included in the fish IBIs, and assessed whether the revised IBI
scores determined for bootstrap replicate samples exhibited
reduced bias. Indeed, when metrics were scored using linear
piecewise continuous curves, mean bootstrap IBI scores did not
differ significantly from original IBI scores. The advantages of
scoring metrics on a continuous score have long been argued
(Minns et al., 1994), and our analysis appears to justify the
adoption by management agencies of continuous scoring methods
for new IBIs.

Many states try to avoid misdiagnosis of site impairment by
collecting more than one biological sample from streams with IBI
scores near the impairment threshold (Fore, personal commu-
nication, 2008). Alternatively, as in Minnesota, a weight of
evidence approach may be used in which additional land use,
habitat, or water chemistry data are required to list a stream site as
impaired if the IBI score falls within the confidence region around
the impairment threshold (MPCA, 2007). The size of this
confidence region (�9 and 13 points in the St. Croix and Upper
Mississippi River basins, respectively) appears sufficient to account
for variability due to random sampling error, which we have
estimated in this study as approximately �5 or 6 points.
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4.2. Covariates of IBI sensitivity

A number of factors were implicated in this study as possible
drivers of variability among IBI scores. For all sites, bootstrap
variability was significantly correlated with the total number of
fish collected in the original field sample. This relationship is
intuitive, given that capturing a larger number of fish provides
more information about each of the component metrics of the IBI
score, and thus reduces uncertainty. Based on our analysis, we
found that field samples containing at least 160 fish could be
interpreted with a reasonable degree of confidence. Obtaining a
sample this large for all sites would likely require increasing either
the standard length over which a stream reach is sampled, or
increasing the sampling intensity (i.e., conducting multiple
sampling passes of the same stream reach). However, although
this sample size is smaller than the minimum of 400 fish
recommended by Fore et al. (1994), achieving collections of 160
fish may not be realistic for highly degraded sites. Moreover,
increasing the number of fish in a sample may affect IBI score,
because there appears to be a significant positive relationship
between these two variables.

IBI sensitivity was also related to the number of rare taxa in a
sample. This relationship likely stems from the susceptibility of
singletons to random sampling error; when creating replicate
samples using the bootstrapping algorithm, species that occur as
single individuals have only a 63% chance, approximately, of being
selected in any given replicate sample. As a result, these species
will not be consistently represented in all 1000 bootstrap replicate
samples. In addition, 91% (88 of 97) of the species that occurred as
singletons were used to score one or more richness-based metrics
(i.e., metrics that are based on the number of species in a given
category). Thus, the inconsistent occurrence of these species in
replicate samples likely introduced variability into richness metric
scores, and ultimately, into overall IBI scores.

Whether species that occurred as singletons were actually rare
in the environment, or just distributed more patchily and thus
difficult to sample proportionately, cannot be determined from
this dataset alone. However, regardless of their true abundance in
the field, our analysis indicates that the failure to accurately
account for the presence of these taxa may affect the resulting IBI
score. Moreover, the fact that IBI confidence interval length was
not related to community evenness suggests that IBIs sensitivity
will be driven more by the presence or absence of these rare taxa
per se, rather than a skewed community distribution. This
observation contradicts the contention, made by several authors,
that the failure to capture all species present at a site does not
significantly affect IBI score (Steedman, 1988; Fore et al., 1994;
Reynolds and Herlihy, 2003), and suggests that managers may
want to carefully weigh trade-offs between minimizing sampling
effort and obtaining a sample that accurately portrays maximum
species richness.

4.3. IBI performance and metric sensitivity

A detailed analysis of the contribution of each individual metric
to overall IBI sensitivity is beyond the scope of this study. However,
because the IBIs developed for each stream class contained a
slightly different combination of metrics, we used differences in IBI
sensitivity among stream classes to evaluate whether some
combinations of metrics were more sensitive to random sampling
error than others. Few significant differences in confidence interval
length were found among the nine different stream classes,
suggesting that the use of different combinations of metrics for IBIs
in each stream class did not result in dramatic differences in IBI
sensitivity to sampling error. An exception was the IBI for class 5
streams (large river sites in the NCH region of the St. Croix), which
was more sensitive to random sampling error than the IBI for
streams in class 3 (moderate-sized sites in the St. Croix). Even in
this case, however, we speculate that the difference in IBI
sensitivity may have stemmed more from the effects of stream
size than from differences in sensitivity among component
metrics. We base this conclusion on the fact that IBIs for these
two classes actually used the same set of 10 metrics, as well as the
same scoring categories for each metric. The only difference
between these IBIs was that, for two of the 10 component metrics
(total no. of species, and no. of sensitive species), the scoring
requirements for class 5 streams were more stringent. This
difference in scoring stringency is indicative of the greater species
richness expected in large, undisturbed river systems in the NCH
region of the St. Croix basin relative to the moderate-sized stream
class, but would not be sufficient to cause increased sensitivity in
the class 5 IBIs. However, samples from class 5 streams contained
considerably more singletons than streams from class 3, on
average. Absence of these species in some bootstrap samples
would introduce greater variability in richness metrics and hence
in overall IBI score. It is perhaps not surprising that singletons were
more frequently collected from larger stream classes. As stream
size increases, biomonitoring crews are often unable to sample the
entire channel and are instead constrained to weave among
available habitat types, which in turn may have prevented the
collection of patchily distributed organisms in great abundance.

The higher sensitivity among class 8 IBIs relative to class 3
IBIs presents a complex problem because these two IBIs were
comprised of two different sets of metrics. One possible
explanation may lie in the fact that the class 8 IBI incorporated
a greater number of metrics that were scored using only three
scoring categories (0, 5, 10) compared to the class 3 IBI. Because
the addition or loss of a species can cause the metric score to
change by a five point interval, metrics scored in this way could
exhibit increased sensitivity to random sampling error. How-
ever, additional analysis is necessary to identify the contribution
of individual metrics to differences in overall IBI sensitivity in
this case.

4.4. Random sampling error vs. variability over time

In previous analyses of IBI variability at the same sites over
time, more highly degraded sites were often found to exhibit more
variability than less-impacted ones (Steedman, 1988; DeShon,
1994; Niemela and Feist, 2000). Greater variability among
degraded sites is typically viewed as the result of changes in the
biological community related to the effects of ongoing anthro-
pogenic disturbances, or to a compromised ability among the
resident biota of these sites to maintain equilibrium following such
disturbances. IBI scores may also vary to a greater extent at more
degraded sites because the IBI as a quantitative tool is less capable
of producing precise results at these sites (Fore et al., 1994).
Although our analysis appeared to indicate that IBIs are less precise
at higher quality sites, this trend is likely driven by the extremely
low variability of some highly degraded sites. In both basins,
several sites with low IBI scores (<30) had confidence interval
lengths of 0, indicating that 95% of bootstrap replicate samples
generated for these sites received the same score. Samples from
these sites typically consisted of only a few species of fish, with
most metrics in the resulting IBI receiving the lowest possible
scores. For these sites, random differences in sample composition
were not sufficient to raise metric values and thus introduce
variability in bootstrap samples.

Interestingly, however, two high quality sites in this study also
exhibited high levels of temporal variability. Both of these sites
were located on the St. Croix River and have large drainage basins,
and thus corroborate a previous study by Niemela and Feist (2000),
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who found that river sites in Minnesota have highly variable IBI
scores over time. They suggested that this increased variability was
likely due either to an inability to capture a representative fish
sample in larger rivers, or to the greater array of disturbances
acting on larger watersheds compared to smaller watersheds over
time. While some large river sites in the St. Croix appeared more
vulnerable to random sampling error than smaller sites (see above
discussion), simulated sampling error alone did not account for the
large variation at these two sites over time. Our analyses suggest,
as argued by Jacobson (2000), that further research may be needed
to develop theoretical understanding and biocriteria for larger
river systems.

Temporal variance also exceeded that attributed to random
sampling error for poor to moderate quality sites (IBI scores < 70).
This higher variance indicated that additional factors other than
random sampling may be driving changes in the biological samples
collected at these sites over time. Presumably, these additional
factors are related to anthropogenic stress. For the remaining high
quality sites (IBI scores > 70, excluding the two large river sites),
temporal variance and random sampling error were similar. In
these sites, which presumably experience relatively little anthro-
pogenic disturbance, biological communities appeared relatively
stable over time, and temporal variance was relatively small. We
suggest that variability in biological samples from these sites is as
likely due to random sampling errors as temporal changes in
biological communities.

4.5. Limitations of a bootstrap approach

There are a number of limitations associated with using the
bootstrap method to quantify variability associated with IBI scores.
First, the amount of variation across bootstrap replicates is
constrained by the bootstrap algorithm, which samples with
replacement from the original sample until the number of fish in
the original sample is reached. As a result, every bootstrap replicate
will have the same number of specimens as the original sample
from which it is derived. We found that fish abundance was
significantly correlated with IBI score; thus, restricting the
potential for total abundance to vary may result in a tendency
to underestimate the total amount of random sampling variability
associated with IBI scores. A similar problem occurs with the total
number of species in a sample; the bootstrap algorithm does not
substitute new species into replicate samples beyond those found
in the original sample.

Moreover, using a bootstrapping approach to calculate IBI
scores assumes that the original sample used to create bootstrap
replicates represents a random sample of all individuals and
species present at a site, and that individuals and species are
represented in the sample in proportion to their true abundance at
the stream site. In reality, the original sampling event was unlikely
to have met these criteria in full. Rare taxa, for example, are more
likely to be unrepresented in fish samples, especially in larger river
sites where by necessity electrofishing crews are unable to pass
through all available fish habitat. In addition, because some fish
taxa may be easier to collect than others, their relative abundance
in a fish sample may not correspond to their true relative
abundance in the stream’s fish community. One way that such bias
may occur is if electrofishing fails to capture smaller, more cryptic
species or age classes (Peterson et al., 2004).

5. Conclusions

In the last several decades, the volume of literature dedicated
to the development of new IBIs and related indices has grown at a
vigorous rate. However, despite the sustained attention to index
development, as well as the increased application of IBIs to water
quality management decisions, questions remain regarding the
strengths and limitations of these indices. In particular, the
precision and sensitivity of IBIs have never been thoroughly
addressed. Because IBIs do not use a uniform set of metrics or
metric scoring criteria across various geographic regions, we
cannot assume that all indices will perform with uniform
sensitivity to random sampling error. Indeed, our analyses
suggest that Minnesota fish IBIs are more sensitive to random
sampling error than a set of previously studied IBIs from Ohio.

Moreover, if our understanding of IBI variability is to keep pace
with trends in water policy, we need to directly examine how such
variability relates to stream impairment thresholds. Here, we
demonstrated that, while IBI sensitivity to random sampling error
was somewhat larger than expected, this variability was not
sufficient to change the impairment status in the majority of
replicate samples for stream sites in Minnesota. For sites with IBI
scores near the impairment threshold, random sampling varia-
bility is more likely to affect status determination, and more than
one field sample may be needed to verify status.

We also highlighted new relationships between IBI variability
and aspects of fish samples including abundance and the number
of rare species, and we proposed suggestions for the number of fish
upon which IBI scores should be based if the effects of random
sampling errors are to be minimized. Lastly, we have demonstrated
that a continuous scoring approach for the component metrics of
the IBI can reduce bias in overall IBI score, relative to the
discontinuous scoring methods that remain the standard approach
in IBI development today.
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